[리뷰] 제대로 시작하는 챗GPT와 AI 활용 with 파이썬
in Review on Review, Book, Gpt, Python, Api, 프롬프트, 엔진니어링, 위스퍼, Clip, Dalle, 임베딩, 파인튜닝, Rag

한빛미디어
출판사의"제대로 시작하는 챗GPT와 AI 활용 with 파이썬(에이먼 엘 암리 저/대니얼WJ 역)"
를 읽고 작성한 리뷰입니다.
현존하는 생성형 AI 모델 대부분을 쉽게 실습해보며 빠르게 활용법을 파악할 수 있다. 임베딩, 파인튜닝, RAG, Agent 같은 난이도 있는 기술도 핵심만 빠르게 흡수할 수 있도록 도와준다.
LLM의 중요한 장점 중 하나는 일반인이 프로그래밍 세계로 진입하는데 장벽을 매우 낮춰준다는 점이다. 덕분에 이 책에서 다루는 내용과 같이 일반인도 LLM의 도움을 받아 기존에 엄두도 내지 못했던 기능을 구현할 수 있게 되었다.
다른 리뷰에서도 작성했지만 현시점만 놓고 봤을때 사실상 AI의 중요한 본질은 정량화, 비정형 데이터의 해석력에 있다고 생각한다. 비정형 해석 장벽이 낮아지면서 자연어로 프로그래밍 혹은 서비스를 만들 수 있는 가능성이 높아졌다.
이 책은 OpenAI 진영의 비정형 데이터를 해석할 수 있는 다양한 모델들을 실습해보는 예제이다.
그렇기에 눈에 띄는 장점은 다음 세가지를 들 수 있다. 첫번째로는 일반인이 따라갈 수 있는 난이도, 두번째로는 생성형 AI 모델의 전체 기능을 빠르게 훑을 수 있다는 점, 세번째로는 예시 기반으로 하니씩 실행해가며 쉽게 따라할 수 있다는 점
을 들 수 있다.
첫번째 장점은 저자가 서문에서도 밝힌 바와 같다. 기반 지식이 부족해도 자신만의 지식시스템을 구축하고자 독자에게 상당한 도움이 될 수 있는 책이다.
대부분의 DevOps 환경 구성을 감춰줄 수 있는 구글 코랩
환경에서 실습이 이뤄지고, 초보자가 요금 폭탄을 맞는 실수를 피하기 위해 다양한 모델의 세부적인 가격
까지 안내할 정도로 친절한 설명이 이어진다.
물론 Python의 예제가 등장하여 프로그래밍을 해 본 독자라면 더 좋겠지만, 일단 프로그래밍을 모르더라도 깃허브에 올라온 예제를 그대로 필사하는 정도만으로도 원하는 기능을 구현하는데 큰 무리는 없을것이다.
사실상 말이 프로그래밍이지 OpenAI의 API를 호출
하는 형식의 코드가 대부분이기에 바둑으로 따지면 거의 외길 수순이다. 그대로 따라하면 큰 문제없이 수행된다.
더불어 중간 중간 중요한 개념들은 자세하게 설명하며 짚어나가고 있기에 대략적인 개념 정도는 잡으며 실습할 수 있을 것이다. 예를 들어 아래 그림과 같이 프롬프팅
이 무엇인지 개념도와 예시 설명을 들고 있다.
초반부 프롬프팅과 같은 간단한 예제를 살펴보았다면 중반부에는 다양한 AI 모델을 체험할 수 있도록 구성되어 있다. DALL·E 모델을 활용하여 텍스트로 이미지를 생성해본다든가, 이미지를 합성해 보고, TTS나 이미지 분류 등을 실습하며 다양한 LLM의 활용법을 빠르게 익힐 수 있다.
이 책은 OpenAI 중심의 모델을 주로 다루고 있지만, 부록을 참조하면 클로드와 같은 또 다른 진영의 AI 활용 실습을 진행해 볼 수 있다는 점도 장점이다.
다만, 후반부에 해당하는 15장 임베딩 파트부터는 일반인이 따라하기에는 다소 벅찰 수도 있다. 그래도 예제대로 실습을 따라하며 주요 개념만 파악해보겠다는 자세로 진행하면 상당히 많은 지식을 얻을 수 있을것이다.
임베딩의 경우 사실 개념상으로는 별게 없다. 이 세상의 자연어와 같은 텍스트를 단순히 숫자(조금 더 표현하면 벡터)로 변환해 주는 것이다.
이를 통해 컴퓨터가 알아들을 수 있게 숫자로 변환이 가능해진다는 점, 나아가 코사인 유사도와 같은 수학적 도구를 사용할 수 있다는 점이 큰 특징인데 이를 통해 벡터 공간에 포진된 두 개념의 유사도를 구할 수 있고 이로써 LLM은 정규표현식에서 한걸음 더 나아간 의미 기반 검색도 가능해진다.
다음의 예제는 임베딩의 개념
을 아주 깔끔하게 소개해주는 예제이다. 입력된 자연어가 숫자 그것도 벡터 형태로 변환되어 출력되고 있음을 볼 수 있다.
여기서 한걸음 더 나아가면 독자가 보유한 자체 데이터로 기존 모델을 파인튜닝
할 수 있게 된다. 기능적인 측면만 놓고 봤을때는 나만의 별도 모델을 얻는 셈이다.
이 또한 일반인이 따라할 수 있을 듯 싶다. 파인튜닝 또한 OpenAI API에게 맡겨버리기 때문이다. 대시보드를 통해 아래 그림과 같이 모니터링 및 결과 확인이 가능하다.
또한 부록을 포함하여 후반부에는 다양한 재미있는 예제들이 등장한다. 예를들면 스트림릿과 깃허브
를 이용하여 건강상담 챗봇을 구현하는 예제가 그러하다. 둘 다 AI시대 각광받는 플랫폼이기에 비전공자들이 프로그래밍 세계에 진입할 수 있는 호기심 어린 좋은 예제라 생각한다.
그 외에도 RAG, Agent의 핵심 코드 정도를 다루고 있어 이 두 개념의 핵심을 빠르게 파악할 수 있는 예제도 등장한다. 최근 등장한 A2A, MCP와 같은 기술을 제외하고 굵직한 개념 정도는 이 책을 통해 실습 및 파악할 수 있는 셈이다.
결론적으로 이 책은 일반인, 기획자, 경영자에게 매우 많은 도움을 줄 수 있을 것 같다. 물론 개발자중에도 AI를 거의 접해본 적이 없다면 빠르게 현존하는 AI 모델의 특성을 파악하고 기획하는 서비스에 어떻게 활용할지 판단하는데 매우 큰 도움이 될 것이다.